高中數(shù)學(xué)選修4-4同步備課教案
作為一名老師,常常要根據(jù)教學(xué)需要編寫(xiě)教案,教案有助于順利而有效地開(kāi)展教學(xué)活動(dòng)。那么寫(xiě)教案需要注意哪些問(wèn)題呢?下面是小編收集整理的高中數(shù)學(xué)選修4-4同步備課教案,歡迎閱讀與收藏。
高中數(shù)學(xué)選修4-4同步備課教案1
第四課時(shí):圓錐曲線參數(shù)方程的應(yīng)用
一、教學(xué)目標(biāo):
知識(shí)與技能:利用圓錐曲線的參數(shù)方程來(lái)確定最值,解決有關(guān)點(diǎn)的軌跡問(wèn)題
過(guò)程與方法:選擇適當(dāng)?shù)膮?shù)方程求最值。
情感、態(tài)度與價(jià)值觀:通過(guò)觀察、探索、發(fā)現(xiàn)的創(chuàng)造性過(guò)程,培養(yǎng)創(chuàng)新意識(shí)。
二、重難點(diǎn):教學(xué)重點(diǎn):選擇適當(dāng)?shù)膮?shù)方程求最值。
教學(xué)難點(diǎn):正確使用參數(shù)式來(lái)求解最值問(wèn)題
三、教學(xué)模式:講練結(jié)合,探析歸納
四、教學(xué)過(guò)程:
(一)、復(fù)習(xí)引入:
通過(guò)參數(shù)簡(jiǎn)明地表示曲線上任一點(diǎn)坐標(biāo)將解析幾何中以計(jì)算問(wèn)題化為三角問(wèn)題,從而運(yùn)用三角性質(zhì)及變換公式幫助求解諸如最值,參數(shù)取值范圍等問(wèn)題。
(二)、講解新課:
例1、雙曲線的兩焦點(diǎn)坐標(biāo)是。
答案:(0,-4),(0,4)。學(xué)生練習(xí)。
例2、方程(t為參數(shù))的圖形是雙曲線右支。
學(xué)生練習(xí),教師準(zhǔn)對(duì)問(wèn)題講評(píng)。反思?xì)w納:判斷曲線形狀的方法。
例3、設(shè)P是橢圓在第一象限部分的弧AB上的一點(diǎn),求使四邊形OAPB的面積最大的點(diǎn)P的坐標(biāo)。
分析:本題所求的最值可以有幾個(gè)轉(zhuǎn)化方向,即轉(zhuǎn)化為求的最大值或者求點(diǎn)P到AB的最大距離,或者求四邊形OAPB的最大值。
學(xué)生練習(xí),教師準(zhǔn)對(duì)問(wèn)題講評(píng)?!?時(shí)四邊形OAPB的最大值=6,此時(shí)點(diǎn)P為(3,2)。】
?。ㄈ㈧柟逃?xùn)練
1、直線與圓相切,那么直線的傾斜角為(A)
A.或B.或C.或D.或
2、橢圓()與軸正向交于點(diǎn)A,若這個(gè)橢圓上存在點(diǎn)P,使OP⊥AP,(O為原點(diǎn)),求離心率的范圍。
3、拋物線的內(nèi)接三角形的一個(gè)頂點(diǎn)在原點(diǎn),其重心恰是拋物線的焦點(diǎn),求內(nèi)接三角形的周長(zhǎng)。
4、設(shè)P為等軸雙曲線上的一點(diǎn),,為兩個(gè)焦點(diǎn),證明
5、求直線與圓的交點(diǎn)坐標(biāo)。
解:把直線的參數(shù)方程代入圓的方程,得(1+t)2+(1-t)2=4,得t=±1,分別代入直線方程,得交點(diǎn)為(0,2)和(2,0)。
(三)、小結(jié):本節(jié)課我們利用圓錐曲線的參數(shù)方程來(lái)確定最值,解決有關(guān)點(diǎn)的軌跡問(wèn)題,選擇適當(dāng)?shù)膮?shù)方程正確使用參數(shù)式來(lái)求解最值問(wèn)題,要求理解和掌握求解方法。
?。ㄋ模⒆鳂I(yè):
練習(xí):在拋物線的頂點(diǎn),引兩互相垂直的兩條弦OA,OB,求頂點(diǎn)O在AB上射影H的軌跡方程。
五、教學(xué)反思:
高中數(shù)學(xué)選修4-4同步備課教案2
教學(xué)目的:
知識(shí)目標(biāo):
了解在柱坐標(biāo)系、球坐標(biāo)系中刻畫(huà)空間中點(diǎn)的位置的方法
能力目標(biāo):
了解柱坐標(biāo)、球坐標(biāo)與直角坐標(biāo)之間的變換公式。
德育目標(biāo):
通過(guò)觀察、探索、發(fā)現(xiàn)的創(chuàng)造性過(guò)程,培養(yǎng)創(chuàng)新意識(shí)。
教學(xué)重點(diǎn):
體會(huì)與空間直角坐標(biāo)系中刻畫(huà)空間點(diǎn)的位置的方法的區(qū)別和聯(lián)系
教學(xué)難點(diǎn):
利用它們進(jìn)行簡(jiǎn)單的數(shù)學(xué)應(yīng)用
授課類型:
新授課
教學(xué)模式:
啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).
教具:
多媒體、實(shí)物投影儀
教學(xué)過(guò)程:
一、復(fù)習(xí)引入:
情境:我們用三個(gè)數(shù)據(jù)來(lái)確定衛(wèi)星的位置,即衛(wèi)星到地球中心的距離、經(jīng)度、緯度。
問(wèn)題:如何在空間里確定點(diǎn)的位置?有哪些方法?
學(xué)生回顧
在空間直角坐標(biāo)系中刻畫(huà)點(diǎn)的位置的方法_科_網(wǎng)]
極坐標(biāo)的意義以及極坐標(biāo)與直角坐標(biāo)的互化原理
二、講解新課:
1、球坐標(biāo)系
設(shè)P是空間任意一點(diǎn),在oxy平面的射影為Q,連接OP,記|OP|=,OP與OZ軸正向所夾的角為,P在oxy平面的射影為Q,Ox軸按逆時(shí)針?lè)较蛐D(zhuǎn)到OQ時(shí)所轉(zhuǎn)過(guò)的最小正角為,點(diǎn)P的位置可以用有序數(shù)組表示,我們把建立上述對(duì)應(yīng)關(guān)系的坐標(biāo)系叫球坐標(biāo)系(或空間極坐標(biāo)系)
有序數(shù)組叫做點(diǎn)P的球坐標(biāo),其中≥0,0≤≤,0≤<2。
空間點(diǎn)P的直角坐標(biāo)與球坐標(biāo)之間的變換關(guān)系為:
2、柱坐標(biāo)系
設(shè)P是空間任意一點(diǎn),在oxy平面的射影為Q,用(ρ,θ)(ρ≥0,0≤θ<2π)表示點(diǎn)在
平面oxy上的極坐標(biāo),點(diǎn)P的位置可用有序數(shù)組(ρ,θ,Z)表示把建立上述對(duì)應(yīng)關(guān)系的坐標(biāo)系叫做柱坐標(biāo)系
有序數(shù)組(ρ,θ,Z)叫點(diǎn)P的柱坐標(biāo),其中ρ≥0,0≤θ<2π,z∈R
空間點(diǎn)P的直角坐標(biāo)(x,y,z)與柱坐標(biāo)(ρ,θ,Z)之間的變換關(guān)系為:
3、數(shù)學(xué)應(yīng)用
例1建立適當(dāng)?shù)那蜃鴺?biāo)系,表示棱長(zhǎng)為1的正方體的頂點(diǎn).
變式訓(xùn)練
建立適當(dāng)?shù)闹鴺?biāo)系,表示棱長(zhǎng)為1的正方體的頂點(diǎn).
例2.將點(diǎn)M的球坐標(biāo)化為直角坐標(biāo).
變式訓(xùn)練
1.將點(diǎn)M的直角坐標(biāo)化為球坐標(biāo).
2.將點(diǎn)M的柱坐標(biāo)化為直角坐標(biāo).
3.在直角坐標(biāo)系中點(diǎn)>0)的球坐標(biāo)是什么?
例3.球坐標(biāo)滿足方程r=3的點(diǎn)所構(gòu)成的圖形是什么?并將此方程化為直角坐標(biāo)方程.
變式訓(xùn)練
標(biāo)滿足方程=2的點(diǎn)所構(gòu)成的圖形是什么?
例4.已知點(diǎn)M的柱坐標(biāo)為點(diǎn)N的球坐標(biāo)為求線段MN的長(zhǎng)度.
思考:
在球坐標(biāo)系中,集合表示的圖形的體積為多少?
三、鞏固與練習(xí)
四、小 結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.球坐標(biāo)系的作用與規(guī)則;
2.柱坐標(biāo)系的作用與規(guī)則。
五、課后作業(yè):教材P15頁(yè)12,13,14,15,16
六、課后反思:本節(jié)內(nèi)容與平面直角坐標(biāo)和極坐標(biāo)結(jié)合起來(lái),學(xué)生容易理解。但以后少用,可能會(huì)遺忘很快。需要定期調(diào)回學(xué)生的記憶。
高中數(shù)學(xué)選修4-4同步備課教案3
一、教學(xué)目標(biāo):
知識(shí)與技能:了解直線參數(shù)方程的`條件及參數(shù)的意義
過(guò)程與方法:能根據(jù)直線的幾何條件,寫(xiě)出直線的參數(shù)方程及參數(shù)的意義
情感、態(tài)度與價(jià)值觀:通過(guò)觀察、探索、發(fā)現(xiàn)的創(chuàng)造性過(guò)程,培養(yǎng)創(chuàng)新意識(shí)。
二重難點(diǎn):教學(xué)重點(diǎn):曲線參數(shù)方程的定義及方法
教學(xué)難點(diǎn):選擇適當(dāng)?shù)膮?shù)寫(xiě)出曲線的參數(shù)方程.
三、教學(xué)方法:啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).
四、教學(xué)過(guò)程
(一)、復(fù)習(xí)引入:
1.寫(xiě)出圓方程的標(biāo)準(zhǔn)式和對(duì)應(yīng)的參數(shù)方程。
圓參數(shù)方程 (為參數(shù))
(2)圓參數(shù)方程為: (為參數(shù))
2.寫(xiě)出橢圓參數(shù)方程.
3.復(fù)習(xí)方向向量的概念.提出問(wèn)題:已知直線的一個(gè)點(diǎn)和傾斜角,如何表示直線的參數(shù)方程?
?。ǘ?、講解新課:
1、問(wèn)題的提出:一條直線L的傾斜角是,并且經(jīng)過(guò)點(diǎn)P(2,3),如何描述直線L上任意點(diǎn)的位置呢?
如果已知直線L經(jīng)過(guò)兩個(gè)
定點(diǎn)Q(1,1),P(4,3),
那么又如何描述直線L上任意點(diǎn)的
位置呢?
2、教師引導(dǎo)學(xué)生推導(dǎo)直線的參數(shù)方程:
(1)過(guò)定點(diǎn)傾斜角為的直線的
參數(shù)方程
?。閰?shù))
【辨析直線的參數(shù)方程】:設(shè)M(x,y)為直線上的任意一點(diǎn),參數(shù)t的幾何意義是指從點(diǎn)P到點(diǎn)M的位移,可以用有向線段數(shù)量來(lái)表示。帶符號(hào).
?。?)、經(jīng)過(guò)兩個(gè)定點(diǎn)Q,P(其中)的直線的參數(shù)方程為
。其中點(diǎn)M(X,Y)為直線上的任意一點(diǎn)。這里參數(shù)的幾何意義與參數(shù)方程(1)中的t顯然不同,它所反映的是動(dòng)點(diǎn)M分有向線段的數(shù)量比。當(dāng)時(shí),M為內(nèi)分點(diǎn);當(dāng)且時(shí),M為外分點(diǎn);當(dāng)時(shí),點(diǎn)M與Q重合。
?。ㄈ⒅本€的參數(shù)方程應(yīng)用,強(qiáng)化理解。
1、例題:
學(xué)生練習(xí),教師準(zhǔn)對(duì)問(wèn)題講評(píng)。反思?xì)w納:1、求直線參數(shù)方程的方法;2、利用直線參數(shù)方程求交點(diǎn)。
2、鞏固導(dǎo)練:
補(bǔ)充:1、直線與圓相切,那么直線的傾斜角為(A)
A.或 B.或 C.或 D.或
2、(坐標(biāo)系與參數(shù)方程選做題)若直線與直線(為參數(shù))垂直,則 .
解:直線化為普通方程是,
該直線的斜率為,
直線(為參數(shù))化為普通方程是,
該直線的斜率為,
則由兩直線垂直的充要條件,得, 。
(四)、小結(jié):(1)直線參數(shù)方程求法;(2)直線參數(shù)方程的特點(diǎn);(3)根據(jù)已知條件和圖形的幾何性質(zhì),注意參數(shù)的意義。
?。ㄎ澹⒆鳂I(yè):
補(bǔ)充:設(shè)直線的參數(shù)方程為(t為參數(shù)),直線的方程為y=3x+4則與的距離為_(kāi)______
【考點(diǎn)定位】本小題考查參數(shù)方程化為普通方程、兩條平行線間的距離,基礎(chǔ)題。
解析:由題直線的普通方程為,故它與與的距離為。
五、教學(xué)反思:
【高中數(shù)學(xué)選修4-4同步備課教案】相關(guān)文章: